ΔΥΟ ΣΗΜΑΝΤΙΚΕΣ ΔΥΝΑΜΕΙΣ ΣΤΟΝ ΚΟΣΜΟ
ΒΑΡΟΣ ΚΑΙ ΒΑΡΥΤΙΚΗ ΔΥΝΑΜΗ
ΒΑΡΟΣ ΚΑΙ ΒΑΡΥΤΙΚΗ ΔΥΝΑΜΗ
ΕΙΣΑΓΩΓΗ
Σηκώνουμε μια πέτρα σε κάποιο ύψος από την επιφάνεια του εδάφους και την αφήνουμε ελεύθερη.Όπως παρατηρούμε η πέτρα δεν παραμένει ελεύθερη,αλλά κινείται κατακόρυφα προς τα κάτω.Η ταχύτητα της πέτρας μεταβάλλεται.Συνεπώς στην πέτρα ασκείται δύναμη.
Σηκώνουμε μια πέτρα σε κάποιο ύψος από την επιφάνεια του εδάφους και την αφήνουμε ελεύθερη.Όπως παρατηρούμε η πέτρα δεν παραμένει ελεύθερη,αλλά κινείται κατακόρυφα προς τα κάτω.Η ταχύτητα της πέτρας μεταβάλλεται.Συνεπώς στην πέτρα ασκείται δύναμη.
Σηκώνουμε μια πέτρα σε κάποιο ύψος από την επιφάνεια του εδάφους και την αφήνουμε ελεύθερη.Όπως παρατηρούμε η πέτρα δεν παραμένει ελεύθερη,αλλά κινείται κατακόρυφα προς τα κάτω |
Γενικά αν αφήσουμε ένα σώμα ελεύθερο σε κάποιο ύψος από την επιφάνεια της γης,παρατηρούμε ότι το σώμα πέφτει κατακόρυφα προς το έδαφος.Αυτό συμβαίνει,γιατί η γη ασκεί στο σώμα μία δύναμη.
O Ισαάκ Νεύτων καθόταν κάτω από μια μηλιά και είδε ένα μήλο να πέφτει στο έδαφος |
Πρώτος που ασχολήθηκε με την δύναμη που προκαλεί την κίνηση του σώματος ήταν ο Ισαάκ Νεύτων και λέγεται βάρος Β του σώματος.Σύμφωνα με την παράδοση,ενώ καθόταν κάτω από μια μηλιά, είδε ένα μήλο να πέφτει στο έδαφος.Υπέθεσε τότε ότι η δύναμη που προκάλεσε την κίνηση του μήλου ασκείται από τη γη σ' αυτό.Το βάρος έχει φορά από το σώμα προς το κέντρο της γης.
ΟΡΙΣΜΟΣ ΤΟΥ ΒΑΡΟΥΣ
Από την εμπειρία μας γνωρίζουμε ότι όλα το σώματα έχουν βάρος.Για να σηκώσουμε ψηλά ένα σώμα πρέπει να ασκήσουμε σ' αυτό μια μυϊκή δύναμη,γιατί η Γη έλκει προς τα κάτω με μια δύναμη,το βάρος.Επομένως:
Βάρος ενός σώματος ονομάζεται η ελκτική δύναμη που ασκεί η γη στο σώμα αυτό.Το βάρος έχει διεύθυνση κατακόρυφη και φορά προς το κέντρο της γης.
Βάρος ενός σώματος ονομάζεται η ελκτική δύναμη που ασκεί η γη στο σώμα αυτό.Το βάρος έχει διεύθυνση κατακόρυφη και φορά προς το κέντρο της γης |
Θεωρούμε ένα σώμα που έχει μάζα m και βάρος μέτρου Β.Όταν το σώμα το αφήσουμε να πέσει ελεύθερα αυτό εκτελεί ελεύθερη πτώση.Το σώμα λόγω του βάρους του αποκτά επιτάχυνση g.Εφαρμόζουμε στην περίπτωση αυτή το Θεμελιώδη νόμο της Μηχανικής F=mα,παίρνοντας υπόψη μας ότι F=B και α=g.Άρα βρίσκουμε:
Όταν χρησιμοποιούμε την τελευταία σχέση σε διάφορα προβλήματα,πρέπει να εκφράζουμε το βάρος σε N,τη μάζα σε Kg και την επιτάχυνση της βαρύτητας σε m/s2.
Σύμφωνα με τη σχέση αυτή σώμα μάζας 1kg έχει βάρος:
Β = 1kg . 9,81m/s2 ή
Β = 9,81Ν
Β = 9,81Ν
ΜΟΝΑΔΑ ΜΕΤΡΗΣΗΣ ΤΟΥ ΒΑΡΟΥΣ
Το βάρος είναι δύναμη και επομένως οι μονάδες μέτρησης του βάρους είναι ίδιες με τις μονάδες μέτρησης της δύναμης.
Άρα η μονάδα μέτρησης του βάρους στο SI είναι η μονάδα της δύναμης,δηλαδή το 1 Ν (1 Newton).
H μονάδα μέτρησης του βάρους στο SI είναι το 1 Ν(1 Newton) |
Άλλη μονάδα μέτρησης του βάρους είναι το 1 κιλοπόντ (1Κp) που ονομάζεται και χιλιόγραμμο βάρους.Ισχύει:
1kp=9,81N
Μια δύναμη είναι ίση με 1kp όταν ενεργεί σε μάζα 1kg και της προσδίδει επιτάχυνση α=g=9,81m/s2.
ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ ΤΟΥ ΒΑΡΟΥΣ
Σε όλα τα σώματα η γη ασκεί βαρυτική δύναμη,ανεξάρτητα αν αυτό βρίσκεται στο έδαφος,πέφτει ή ανυψώνεται.
Η γη πάντοτε έλκει τα σώματα προς το κέντρο της και άρα οι βαρυτικές δυνάμεις είναι πάντοτε ελκτικές |
Η γη πάντοτε έλκει τα σώματα προς το κέντρο της και άρα οι βαρυτικές δυνάμεις είναι πάντοτε ελκτικές.
Ο Νεύτων αποδέχτηκε ότι η βαρυτική δύναμη που προκαλεί την πτώση ενός μήλου, ασκείται και στη Σελήνη και προκαλεί τη κυκλική κίνηση της γύρω από τη γη |
Ο Νεύτων αποδέχτηκε ότι η βαρυτική δύναμη που προκαλεί την πτώση ενός μήλου,ασκείται και στη Σελήνη και προκαλεί τη κυκλική κίνηση της γύρω από τη γη.Γι' αυτό έβγαλε το συμπέρασμα ότι οι βαρυτικές δυνάμεις ασκούνται μεταξύ όλων των σωμάτων στο σύμπαν.
Η διεύθυνση του βάρους ενός σώματος σε ένα τόπο ονομάζεται κατακόρυφος του τόπου και είναι κάθετη στην επιφάνεια των υγρών που ηρεμούν |
Σε κάθε τόπο το βάρος έχει τη διεύθυνση της ακτίνας της γης και φορά προς το κέντρο της.Η διεύθυνση του βάρους ενός σώματος σε ένα τόπο ονομάζεται κατακόρυφος του τόπου και είναι κάθετη στην επιφάνεια των υγρών που ηρεμούν.
Το βάρος ενός σώματος αυξάνεται,όταν αυτό μεταφέρεται από τον ισημερινό προς τους πόλους της γης.
Σταθερά αναλογίας g ονομάζεται επιτάχυνση της βαρύτητας και η τιμή της εξαρτάται από τον τόπο στον οποίο βρισκόμαστε |
Σταθερά αναλογίας g ονομάζεται επιτάχυνση της βαρύτητας και η τιμή της εξαρτάται από τον τόπο στον οποίο βρισκόμαστε.Επομένως η τιμή του βάρους w από τόπο σε τόπο διαφέρει αφού εξαρτάται από το g.
Η μάζα ενός σώματος είναι πάντοτε σταθερή |
Το βάρος ενός σώματος ελαττώνεται,όταν αυξάνεται η απόσταση του σώματος από την επιφάνεια της γης.Σε προηγούμενη ενότητα μάθαμε ότι η μάζα ενός σώματος είναι πάντοτε σταθερή.Αν έχουμε βάρος 800 Ν στην επιφάνεια της θάλασσας,θα έχουμε βάρος περίπου 797 Ν στην κορυφή του Έβερεστ.Ένας αστροναύτης που βρίσκεται σε ύψος ίσο με την ακτίνα της γης, έχει βάρος ίσο με το 1/4 του βάρους του στην επιφάνεια της γης.
Το βάρος μας στη Σελήνη θα είναι 6 φορές μικρότερο από το βάρος μας στη Γη |
Όλοι οι πλανήτες ασκούν βαρυτική δύναμη σ'οποιοδήποτε σώμα που βρίσκεται στο έδαφος τους,πέφτει ή ανυψώνεται κοντά στην επιφάνεια τους.Όταν το σώμα βρίσκεται στην επιφάνεια της σελήνης,η γήινη βαρυτική δύναμη που ασκείται σ' αυτό είναι πάρα πολύ μικρή συγκριτικά με τη σεληνιακή.
Η βαρυτική δύναμη που ασκείται στη Σελήνη προκαλεί τη κυκλική κίνηση της γύρω από τη γη |
Για την βαρυτική δύναμη ενός σώματος στη Σελήνη και στη Γη έχουμε τα ακόλουθα αποτελέσματα:
α) Η βαρυτική έλξη εξαρτάται από τη μάζα του πλανήτη.
β) Η Σελήνη έχει 6 φορές μικρότερη μάζα από την Γη.
γ) Η βαρυτική δύναμη στη Σελήνη θα είναι 6 φορές μικρότερη από τη γήινη βαρυτική δύναμη.
δ) Το βάρος της μπάλας στη Σελήνη θα είναι 6 φορές μικρότερο από το βάρος της στη Γη.
Δεν έχει νόημα να μιλάμε για το βάρος της Γης ή της Σελήνης ή οποιουδήποτε αστέρα,αλλά μόνο για τη μάζα τους.
ΤΡΙΒΗ
ΤΡΙΒΗ |
ΕΙΣΑΓΩΓΗ
Σπρώχνουμε ένα βιβλίο πάνω σ' ένα τραπέζι όπως φαίνεται στο παρακάτω σχήμα.Το βιβλίο αρχίζει να κινείται και λίγο αργότερα σταματά.Μια δύναμη προκάλεσε το σταμάτημα του βιβλίου.
Κινούμε ένα μολύβι πάνω στη σελίδα του τετραδίου μας.Παρατηρούμε ότι αισθανόμαστε μια δύναμη που αντιστέκεται στην κίνηση του μολυβιού.
ΟΡΙΣΜΟΣ ΤΡΙΒΗΣ
Η δύναμη που ασκείται και στα δυο παραπάνω παραδείγματα και αντιστέκεται στην κίνηση των σωμάτων του βιβλίου και του μολυβιού ονομάζεται τριβή.
Αυξάνουμε σταθερά τα σταθμά του δίσκου από F σε F1,F2,F3 κ.τ.λ. και παρατηρούμε ότι το σώμα Σ εξακολουθεί να ισορροπεί μέχρι ενός ορίου.Από αυτό συμπεραίνουμε ότι η στατική τριβή παίρνει διαδοχικά τις τιμές F1,F2,F3 κ.τ.λ.
Επομένως:
Αν εξακολουθήσουμε να αυξάνουμε τα σταθμά του δίσκου θα παρατηρήσουμε ότι σε κάποια στιγμή το σώμα θα αρχίσει να γλιστράει (ολισθαίνει) πάνω στο επίπεδο.Η δύναμη της στατικής τριβής έχει πάρει τη μέγιστη τιμή και λέγεται οριακή τριβή.
Στο προηγούμενο πείραμα συνεχίζουμε να αυξάνουμε διαδοχικά τα σταθμά του δίσκου.Όταν τα σταθμά μεγαλώσουν πολύ,π.χ. F4,παρατηρούμε ότι το σώμα Σ ολισθαίνει(γλιστρά) αργά και ομαλά,δηλαδή με σταθερή ταχύτητα.Στην περίπτωση αυτή η τριβή που ασκείται στο σώμα από το υποστήριγμα του είναι F4 και λέγεται τριβή ολίσθησης Τ.
Επομένως:
Η τριβή ολίσθησης έχει μέτρο ίσο με το μέτρο της δύναμης που πρέπει να ασκήσουμε στο σώμα,παραλλήλως προς την επιφάνεια επαφής,για να κινείται αυτό με σταθερή ταχύτητα.
ΝΟΜΟΙ ΤΗΣ ΤΡΙΒΗΣ ΟΛΙΣΘΗΣΗΣ
α) Στο προηγούμενο πείραμα βρήκαμε ότι η τριβή ολίσθησης είναι Τ=F4.Πάνω στο ίδιο υποστήριγμα τοποθετούμε το ίδιο σώμα με μια μικρότερη έδρα του.Μετράμε την τριβή ολίσθησης και βρίσκουμε ότι είναι πάλι Τ=F4.
Από αυτό συμπεραίνουμε ότι:
Τ=μ·Ν
Η έκφραση Τ=μ·Ν αποτελεί την ποσοτική έκφραση του νόμου της τριβής ολίσθησης που διατυπώνεται ως εξής:
α) Η τριβή ολίσθησης έχει τιμή ανάλογη της κάθετης δύναμης Ν.
ΑΙΤΙΑ ΤΩΝ ΤΡΙΒΩΝ
Η στατική τριβή και η τριβή ολίσθησης οφείλονται στις μικρές ανωμαλίες(εσοχές και προεξοχές) που υπάρχουν στην επιφάνεια όλων των σωμάτων.
Όταν τα σώματα έρχονται σε επαφή,οι προεξοχές του ενός σώματος εμπλέκονται στις εσοχές του άλλου.
Έτσι,όταν προσπαθήσουμε να κινήσουμε το ένα σώμα πάνω στο άλλο,εμφανίζονται οι τριβές που αντιστέκονται στην κίνηση.Οι τριβές είναι μικρές,όταν οι επιφάνειες που τρίβονται είναι λείες,ενώ μεγάλες όταν οι επιφάνειες αυτές είναι τραχιές.
Σε πολλές περιπτώσεις της καθημερινής μας ζωής οι τριβές είναι πολύ χρήσιμες.Εξαιτίας των τριβών μπορούμε να βαδίσουμε,να κρατούμε στα χέρια μας διάφορα αντικείμενα και να εκτελούμε πολλές χειρωνακτικές εργασίες.
Η κίνηση των οχημάτων,η λειτουργία των φρένων τους,η μετάδοση της κίνησης με ιμάντα(λουρί) και πολλά άλλα φαινόμενα πραγματοποιούνται εξαιτίας των τριβών.Όταν λοιπόν πρέπει να έχουμε μεγάλες τριβές,φροντίζουμε οι επιφάνειες των σωμάτων να είναι τραχιές.
Για το λόγο αυτό ρίχνουμε άμμο στους παγωμένους δρόμους και στις σιδηροτροχιές του τρένου,χαράζουμε τα λάστιχα των αυτοκινήτων και μερικές φορές βάζουμε αλυσίδες σ' αυτά.
Όταν περπατάμε σε γυαλισμένο πάτωμα ή σε παγωμένο δρόμο δυσκολευόμαστε να περπατήσουμε.Τα περισσότερα δυστυχήματα με αυτοκίνητα συμβαίνουν όταν οι δρόμοι είναι βρεγμένοι.
Σπρώχνουμε ένα βιβλίο πάνω σ' ένα τραπέζι.Το βιβλίο αρχίζει να κινείται και λίγο αργότερα σταματά |
Κινούμε ένα μολύβι πάνω στη σελίδα του τετραδίου μας |
ΟΡΙΣΜΟΣ ΤΡΙΒΗΣ
Η δύναμη που ασκείται και στα δυο παραπάνω παραδείγματα και αντιστέκεται στην κίνηση των σωμάτων του βιβλίου και του μολυβιού ονομάζεται τριβή.
Τριβή ονομάζεται η δύναμη που ασκείται από ένα σώμα σε ένα άλλο όταν βρίσκονται σε επαφή και το ένα κινείται ή τείνει να κινηθεί σε σχέση με το άλλο |
Τριβή ονομάζεται η δύναμη που ασκείται από ένα σώμα σε ένα άλλο όταν βρίσκονται σε επαφή και το ένα κινείται ή τείνει να κινηθεί σε σχέση με το άλλο.
Η τριβή εμφανίζεται πάντα ανάμεσα σε δύο επιφάνειες και εμφανίζεται πάντα σε κάθε κίνηση |
Η τριβή εμφανίζεται πάντα ανάμεσα σε δύο επιφάνειες και εμφανίζεται πάντα σε κάθε κίνηση,που παρατηρούμε στην καθημερινή μας ζωή.Η Τριβή οφείλεται στις ανωμαλίες των επιφανειών των αντικειμένων που βρίσκονται σε επαφή.Ακόμη και οι επιφάνειες που φαίνεται να λείες,έχουν ανωμαλίες όταν τις δούμε στο μικροσκόπιο.
Η τριβή εμφανίζεται πάντα ανάμεσα σε δύο επιφάνειες και εμφανίζεται πάντα σε κάθε κίνηση |
Η τριβή είναι η δύναμη που ασκείται από ένα σώμα σε ένα άλλο όταν βρίσκονται σε επαφή και το ένα κινείται ή τείνει να κινηθεί σε σχέση με το άλλο.Η διεύθυνση της τριβής είναι παράλληλη προς τις επιφάνειες που εφάπτονται και έχει φορά τέτοια ώστε να αντιστέκεται στην ολίσθηση της μιας επιφάνειας πάνω πάνω στην άλλη.
Η διεύθυνση της τριβής είναι παράλληλη προς τις επιφάνειες που εφάπτονται και έχει φορά τέτοια ώστε να αντιστέκεται στην ολίσθηση της μιας επιφάνειας πάνω πάνω στην άλλη |
Όταν στη Φυσική λέμε λεία επιφάνεια εννοούμε ότι για αυτή την επιφάνεια ισχύει Τ=0.Στην πραγματικότητα δεν υπάρχει επιφάνεια που να ισχύει Τ=0.Είναι ένα φανταστικό κατασκεύασμα για να απλοποιήσουμε τις ασκήσεις.
Τριβή εμφανίζεται επίσης όταν ένα σώμα κινείται μέσα σε ρευστό (στον αέρα ή σε υγρό). Στην περίπτωση αυτή μιλάμε για αντίσταση αντί για τριβή.
ΣΤΑΤΙΚΗ ΤΡΙΒΗ
ΣΤΑΤΙΚΗ ΤΡΙΒΗ
Το σώμα Σ ισορροπεί πάνω σε οριζόντιο υποστήριγμα,όπως φαίνεται στο παρακάτω σχήμα.Στο σώμα αυτό ασκούνται δυο δυνάμεις,το βάρος Β και η δύναμη Ν από το υποστήριγμα.
Επειδή το σώμα ισορροπεί,πρέπει οι δυνάμεις Β και Ν να είναι αντίθετες.Από αυτό συμπεραίνουμε ότι η Ν είναι κάθετη στην επιφάνεια του υποστηρίγματος και έχει μέτρο ίσο με το βάρος του σώματος,δηλαδή Ν=Β.Κατόπιν εφαρμόζουμε στο σώμα Σ μια δύναμη F,όπως φαίνεται στο παρακάτω σχήμα.
Παρατηρούμε ότι το σώμα Σ δεν κινείται,αν και ασκείται σ' αυτό η οριζόντια δύναμη.Από αυτό καταλαβαίνουμε ότι ασκείται στο σώμα Σ από το υποστήριγμα και μια άλλη δύναμη Τσ,που είναι αντίθετη με την F,δηλαδή Τσ=F,και την εξουδετερώνει.Η δύναμη αυτή λέγεται στατική τριβή Τσ.
Το σώμα Σ ισορροπεί πάνω σε οριζόντιο υποστήριγμα |
Εφαρμόζουμε στο σώμα Σ μια δύναμη F |
Αυξάνουμε σταθερά τα σταθμά του δίσκου από F σε F1,F2,F3 κ.τ.λ. και παρατηρούμε ότι το σώμα Σ εξακολουθεί να ισορροπεί μέχρι ενός ορίου |
Στατική τριβή ονομάζεται η τριβή που εμφανίζεται σε ένα σώμα,όταν επιχειρούμε να το κινήσουμε και αυτό παραμένει ακίνητο |
Στατική τριβή ονομάζεται η τριβή που εμφανίζεται σε ένα σώμα,όταν επιχειρούμε να το κινήσουμε και αυτό παραμένει ακίνητο.
Η στατική τριβή έχει διεύθυνση παράλληλη προς την επιφάνεια επαφής και φορά αντίθετη προς την δύναμη που τείνει να κινήσει το σώμα.
Η στατική τριβή,που εμφανίζεται μεταξύ δυο ορισμένων επιφανειών που βρίσκονται σε επαφή,δεν έχει ορισμένη τιμή.Η στατική τριβή εμποδίζει την έναρξη της κίνησης των σωμάτων.
Η στατική τριβή,που εμφανίζεται μεταξύ δυο ορισμένων επιφανειών που βρίσκονται σε επαφή,δεν έχει ορισμένη τιμή |
Οριακή τριβή ονομάζεται η μέγιστη τιμή της στατικής τριβής |
Οριακή τριβή ονομάζεται η μέγιστη τιμή της στατικής τριβής.
Το συμπέρασμα που βγαίνει είναι ότι η στατική τριβή δεν έχει σταθερή τιμή, αλλά η τιμή της αυξάνεται από μηδέν μέχρι μια μέγιστη τιμή την οριακή τριβή.
ΤΡΙΒΗ ΟΛΙΣΘΗΣΗΣ
Στο προηγούμενο πείραμα συνεχίζουμε να αυξάνουμε διαδοχικά τα σταθμά του δίσκου.Όταν τα σταθμά μεγαλώσουν πολύ,π.χ. F4,παρατηρούμε ότι το σώμα Σ ολισθαίνει(γλιστρά) αργά και ομαλά,δηλαδή με σταθερή ταχύτητα.Στην περίπτωση αυτή η τριβή που ασκείται στο σώμα από το υποστήριγμα του είναι F4 και λέγεται τριβή ολίσθησης Τ.
Τριβή ολίσθησης ονομάζεται η δύναμη που εμφανίζεται σε ένα σώμα,όταν αυτό ολισθαίνει σ' ένα σώμα |
Τριβή ολίσθησης ονομάζεται η δύναμη που εμφανίζεται σε ένα σώμα,όταν αυτό ολισθαίνει σ' ένα σώμα.
Η τριβή ολίσθησης έχει διεύθυνση παράλληλη προς την επιφάνεια επαφής και φορά αντίθετη προς τη φορά κίνησης.
Η τριβή ολίσθησης έχει διεύθυνση παράλληλη προς την επιφάνεια επαφής και φορά αντίθετη προς τη φορά κίνησης |
ΝΟΜΟΙ ΤΗΣ ΤΡΙΒΗΣ ΟΛΙΣΘΗΣΗΣ
α) Στο προηγούμενο πείραμα βρήκαμε ότι η τριβή ολίσθησης είναι Τ=F4.Πάνω στο ίδιο υποστήριγμα τοποθετούμε το ίδιο σώμα με μια μικρότερη έδρα του.Μετράμε την τριβή ολίσθησης και βρίσκουμε ότι είναι πάλι Τ=F4.
Η τριβή ολίσθησης είναι ανεξάρτητη από το εμβαδόν της επιφάνειας επαφής των δυο σωμάτων |
Η τριβή ολίσθησης είναι ανεξάρτητη από το εμβαδόν της επιφάνειας επαφής των δυο σωμάτων.
β) Με πειράματα και ακριβείς μετρήσεις αποδεικνύεται επίσης ότι:
Η τριβή ολίσθησης είναι ανεξάρτητη από την ταχύτητα του σώματος |
Η τριβή ολίσθησης είναι ανεξάρτητη από την ταχύτητα του σώματος.
γ) Διπλασιάζουμε το βάρος του σώματος Σ,μετράμε πάλι την τριβή ολίσθησης Τ2 και βρίσκουμε ότι είναι διπλάσια από πριν,δηλαδή Τ2=Τ.Παρατηρούμε ακόμα ότι Ν'=2·Β=2·Ν.
Από αυτά συμπεραίνουμε ότι:
Η τριβή ολίσθησης είναι ανάλογη με την δύναμη Ν την οποία ασκεί το υποστήριγμα στο σώμα κάθετα στην επιφάνεια επαφής |
Η τριβή ολίσθησης είναι ανάλογη με την δύναμη Ν την οποία ασκεί το υποστήριγμα στο σώμα κάθετα στην επιφάνεια επαφής.
δ) Τοποθετούμε το ίδιο σώμα Σ,που έχει βάρος Β,σε λείο υποστήριγμα,μετράμε πάλι την τριβή ολίσθησης και βρίσκουμε ότι είναι μικρότερη από F4.
Από αυτό συμπεραίνουμε ότι:
Η τριβή ολίσθησης εξαρτάται από την φύση των επιφανειών που τρίβονται |
Η τριβή ολίσθησης εξαρτάται από την φύση των επιφανειών που τρίβονται.
ΔΙΑΤΥΠΩΣΗ ΤΗΣ ΤΡΙΒΗΣ ΟΛΙΣΘΗΣΗΣ
Οι νόμοι αυτοί εκφράζονται με τον τύπο:
όπου:
Τ η τριβή ολίσθησης.
μ ο συντελεστής τριβής ολίσθησης.
Ν η κάθετη δύναμη με την οποία συμπιέζονται οι επιφάνειες.
Τ η τριβή ολίσθησης.
μ ο συντελεστής τριβής ολίσθησης.
Ν η κάθετη δύναμη με την οποία συμπιέζονται οι επιφάνειες.
Η έκφραση Τ=μ·Ν αποτελεί την ποσοτική έκφραση του νόμου της τριβής ολίσθησης
|
α) Η τριβή ολίσθησης έχει τιμή ανάλογη της κάθετης δύναμης Ν.
β) Ο συντελεστής αναλογίας μ λέγεται συντελεστής τριβής ολίσθησης και εκφράζει την εξάρτηση της τριβής ολίσθησης από τη φύση των επιφανειών που είναι σε επαφή.
ΑΙΤΙΑ ΤΩΝ ΤΡΙΒΩΝ
Η στατική τριβή και η τριβή ολίσθησης οφείλονται στις μικρές ανωμαλίες(εσοχές και προεξοχές) που υπάρχουν στην επιφάνεια όλων των σωμάτων.
Η στατική τριβή και η τριβή ολίσθησης οφείλονται στις μικρές ανωμαλίες(εσοχές και προεξοχές) που υπάρχουν στην επιφάνεια όλων των σωμάτων |
Όταν τα σώματα έρχονται σε επαφή,οι προεξοχές του ενός σώματος εμπλέκονται στις εσοχές του άλλου |
ΚΑΛΗ ΤΡΙΒΗ
Η τριβή έχει ένα διπλό ρόλο στη ζωή μας.Υπάρχει η καλή Τριβή και η κακή Τριβή.Η καλή Τριβή μας βοηθάει να βαδίσουμε.Αν δεν υπήρχε τριβή,θα γλιστρούσαμε,όπως για παράδειγμα όταν προσπαθούμε να βαδίσουμε πάνω σε πάγο.
Η τριβή είναι αναγκαία για την κίνηση ενός αυτοκινήτου.Χωρίς αυτή το αυτοκίνητο δε θα μπορούσε να κινηθεί γιατί οι τροχοί του θα περιστρέφονταν στην ίδια θέση.
Αν δεν υπήρχε τριβή,θα γλιστρούσαμε,όπως για παράδειγμα όταν προσπαθούμε να βαδίσουμε πάνω σε πάγο |
Η τριβή είναι αναγκαία για την κίνηση ενός αυτοκινήτου |
Όταν πρέπει να έχουμε μεγάλες τριβές,φροντίζουμε οι επιφάνειες των σωμάτων να είναι τραχιές.Για το λόγο αυτό χαράζουμε τα λάστιχα των αυτοκινήτων |
ΚΑΚΗ ΤΡΙΒΗ
H κακή Τριβή αντιστέκεται στην κίνηση των σωμάτων όπως για παράδειγμα η κίνηση του έλκηθρου,η κίνηση του κολυμβητή,του αλεξιπτωτιστή που πέφτει στον αέρα κ.α..
H κακή Τριβή αντιστέκεται στην κίνηση των σωμάτων όπως για παράδειγμα η κίνηση του έλκηθρου |
Πολλές φορές όμως οι τριβές είναι επιζήμιες και επομένως ανεπιθύμητες.Στις διάφορες μηχανές οι μεταλλικές επιφάνειες που τρίβονται θερμαίνονται και σιγά σιγά καταστρέφονται.Στις περιπτώσεις αυτές φροντίζουμε να ελαττώνουμε τις τριβές χρησιμοποιώντας κατάλληλα λιπαντικά.
Στις διάφορες μηχανές οι μεταλλικές επιφάνειες που τρίβονται θερμαίνονται και σιγά σιγά καταστρέφονται |
Τα τελευταία χρόνια έχει αναπτυχθεί η τεχνολογία της χρήσης του αέρα υπό πίεση για την κίνηση σωμάτων πάνω σε λεπτό στρώμα αέρα οπότε η τριβή ελαττώνεται πολύ σημαντικά.
ΚΥΛΙΣΗ ΚΑΙ ΤΡΙΒΗ
Η κύλιση ενός σώματος γίνεται ευκολότερα από την ολίσθηση του και για το λόγο αυτό επιδιώκουμε στις διάφορες εφαρμογές να έχουμε κύλιση και όχι ολίσθηση.
Η μετατροπή της ολίσθησης σε κύλιση γίνεται με την χρησιμοποίηση του τροχού ή του ρουλεμάν.
Το ρουλεμάν είναι εξάρτημα των μηχανών για τη στήριξη περιστρεφόμενου άξονα ενός αντικειμένου (π.χ. στηρίζει τον άξονα ενός τροχού) και την ελάττωση της τριβής,το οποίο αποτελείται από δύο ομόκεντρους μεταλλικούς δακτύλιους με κυλιόμενες σφαίρες ή κυλίνδρους στο ενδιάμεσο τους διάστημα.
Η κύλιση ενός σώματος γίνεται ευκολότερα από την ολίσθηση του και για το λόγο αυτό επιδιώκουμε στις διάφορες εφαρμογές να έχουμε κύλιση και όχι ολίσθηση |
Το ρουλεμάν είναι εξάρτημα των μηχανών για τη στήριξη περιστρεφόμενου άξονα ενός αντικειμένου (π.χ. στηρίζει τον άξονα ενός τροχού) και την ελάττωση της τριβής,το οποίο αποτελείται από δύο ομόκεντρους μεταλλικούς δακτύλιους με κυλιόμενες σφαίρες ή κυλίνδρους στο ενδιάμεσο τους διάστημα.