ΣΤΕΡΓΙΟΣ ΠΕΛΛΗΣ | 7:32 μ.μ. | | | | | Best Blogger Tips

ΜΙΚΡΟΣΚΟΠΙΟ ΣΑΡΩΣΗΣ ΣΗΡΑΓΓΑΣ

|
ΜΙΚΡΟΣΚΟΠΙΟ ΣΑΡΩΣΗΣ ΣΗΡΑΓΓΑΣ

(SCANNING TUNNELING MICROSCOPE STM)
ΜΙΚΡΟΣΚΟΠΙΟ ΣΑΡΩΣΗΣ ΣΗΡΑΓΓΑΣ
ΕΙΣΑΓΩΓΗ

 Η υπόθεση της ύπαρξης των ατόμων υφίσταται χιλιάδες χρόνια.Ξεκινάει τουλάχιστον από το Δημόκριτο.Μέχρι πρόσφατα τα άτομα παρέμεναν υποθετικά και όχι παρατηρήσιμα.
Το πρώτο ήταν το μικροσκόπιο σάρωσης σήραγγας το 1981,που αναπτύχθηκε από τον Gerd Binnig και Heinrich Rohrer
 Το 1981 οι Ελβετοί φυσικοί Gerd Binnig και Heinrich Rohrer ανέπτυξαν το μικροσκόπιο σάρωσης σήραγγας (STM) που μας έδωσε τη δυνατότητα να «δούμε» άτομα.Για την ανακάλυψή τους τιμήθηκαν με το βραβείο Νόμπελ μόλις τέσσερα χρόνια μετά.

ΑΡΧΗ ΛΕΙΤΟΥΡΓΙΑΣ ΤΟΥ ΜΙΚΡΟΣΚΟΠΙΟΥ ΣΑΡΩΣΗΣ ΣΗΡΑΓΓΑΣ

 Η λειτουργία του STM στηρίζεται στο κβαντομηχανικό φαινόμενο της σήραγγας.Εδώ θα ξεκινήσουμε χρησιμοποιώντας ένα κοντινό ανάλογο,το φαινόμενο της ολικής εσωτερικής ανάκλασης για να καταλάβουμε την αρχή λειτουργίας του STM.
Ένα σύγχρονο μικροσκόπιο σάρωσης σήραγγας (STM) 
 Μία μονοχρωματική δέσμη φωτός που διαδίδεται μέσα σε ένα γυάλινο πλακίδιο και προσπίπτει σε μια έδρα του με γωνία μεγαλύτερη από την κρίσιμη crit) ανακλάται κατά εκατό τοις εκατό.Το φαινόμενο λέγεται ολική εσωτερική ανάκλαση.Στην πραγματικότητα το κύμα του φωτός δε σταματάει ακαριαία πάνω στην ανακλαστική επιφάνεια.Για πολύ μικρό διάστημα, ένα τμήμα της δέσμης, συνεχίζει την πορεία του και έξω από το γυάλινο πλακίδιο.Αυτό μπορούμε να το δείξουμε πλησιάζοντας ένα δεύτερο γυάλινο πλακίδιο κοντά στο πρώτο.Το φωτεινό κύμα που πέρασε έξω από το πρώτο γυάλινο πλακίδιο και εξασθενεί ταχύτατα παραλαμβάνεται από το δεύτερο πλακίδιο και διαδίδεται μέσα σ' αυτό.Η ένταση του μεταδιδόμενου κύματος στο δεύτερο πλακίδιο εξαρτάται από το πόσο κοντά φέραμε τα δύο πλακίδια μεταξύ τους.
Το φωτεινό κύμα που πέρασε έξω από το πρώτο γυάλινο πλακίδιο και εξασθενεί ταχύτατα παραλαμβάνεται από το δεύτερο πλακίδιο και διαδίδεται μέσα σ' αυτό.Η ένταση του μεταδιδόμενου κύματος στο δεύτερο πλακίδιο εξαρτάται από το πόσο κοντά φέραμε τα δύο πλακίδια μεταξύ τους
 Μια από τις σημαντικότερες ανακαλύψεις του εικοστού αιώνα είναι ότι τα σωματίδια συμπεριφέρονται ως κύματα.Όπως το φως μπορεί να διαπεράσει την «απαγορευμένη περιοχή» ανάμεσα στα πλακίδια έτσι και τα σωματίδια μπορούν να διαπεράσουν με το φαινόμενο σήραγγας περιοχές που σύμφωνα με την κλασική θεωρία είναι απαγορευμένες.Ένα απλό παράδειγμα του φαινομένου σήραγγας έχουμε στην περίπτωση δύο μετάλλων που βρίσκονται πολύ κοντά το ένα στο άλλο χωρίς όμως να έρχονται σε επαφή.Μια διαφορά δυναμικού εφαρμόζεται ανάμεσα στα δύο μέταλλα.Τα ελεύθερα ηλεκτρόνια του κομματιού στα αριστερά δεν έχουν αρκετή ενέργεια για να περάσουν στο κομμάτι στα δεξιά.Εντούτοις,όπως τα φωτεινά κύματα,τα κύματα που είναι συνδεδεμένα με τα ηλεκτρόνια δε σταματούν ακαριαία στα όρια της επιφάνειας του μετάλλου αλλά εκτείνονται και έξω από αυτό εξασθενώντας πολύ γρήγορα.Εάν το κενό ανάμεσα στα δύο κομμάτια μετάλλου είναι πολύ μικρό, το ηλεκτρόνιο-κύμα μπαίνει στο δεύτερο κομμάτι πριν εξασθενήσει ολοκληρωτικά και διαδίδεται μέσα σ' αυτό. Ένα ρεύμα ρέει ανάμεσα στα δύο μεταλλικά ηλεκτρόδια.Το ρεύμα αυτό αυξάνεται εκθετικά καθώς τα δύο τμήματα μετάλλου πλησιάζουν μεταξύ τους.
α) Τα ηλεκτρόνια στο εσωτερικό ενός μετάλλου είναι «φυλακισμένα» μέσα σ' αυτό γιατί βρίσκονται μέσα σ' ένα πηγάδι δυναμικού παραγόμενο από την έλξη των θετικών πυρήνων.Οι ενέργειες των ηλεκτρονίων αντιστοιχούν στη σκιασμένη περιοχή.Είναι φανερό ότι τα ηλεκτρόνια δεν έχουν αρκετή ενέργεια για να «δραπετεύσουν από το μέταλλο».
β) Εφαρμόζοντας μια διαφορά δυναμικού ανάμεσα σε δύο γειτονικά μεταλλικά τμήματα ψηλώνουμε τα τοιχώματα δυναμικής ενέργειας του ενός πηγαδιού σε σχέση με το άλλο κατά eV.Σύμφωνα με την κλασική θεωρία ένα φράγμα δυναμικού εξακολουθεί να εμποδίζει τα ηλεκτρόνια να περάσουν από το ένα τμήμα στο άλλο.Η κβαντομηχανική προβλέπει ότι κάποια ηλεκτρόνια μπορούν να διαπεράσουν το φράγμα
 Οι Binnig και Rohrer πέτυχαν να κατασκευάσουν ένα μικροσκόπιο εκμεταλλευόμενοι το φαινόμενο σήραγγας.Το εγχείρημα παρουσίασε μεγάλες δυσκολίες.Η τελική επιτυχία αποτελεί απόδειξη της ιδιοφυΐας των ερευνητών.
 Η κεντρική ιδέα τους ήταν να μιμηθούν κάποιον που προσπαθεί να προσδιορίσει την υφή μιας ανώμαλης επιφάνειας μέσα σε ένα σκοτεινό δωμάτιο σαρώνοντας σχολαστικά την επιφάνεια με τα δάκτυλά του πολλές φορές.
Εφαρμόζοντας μια διαφορά δυναμικού, από λίγα millivolts έως λίγα volts, ανάμεσα στην ακίδα και το δείγμα προκαλούμε ένα ρεύμα σήραγγας της τάξεως των 10-9  Α(nΑ)
 Υποθέστε ότι αντί για ένα δάκτυλο χρησιμοποιούμε μια πολύ αιχμηρή ακίδα την οποία πλησιάζουμε σ' ένα αγώγιμο δείγμα χωρίς να την φέρνουμε ποτέ σε επαφή με αυτό.Εφαρμόζοντας μια διαφορά δυναμικού, από λίγα millivolts έως λίγα volts,ανάμεσα στην ακίδα και το δείγμα προκαλούμε ένα ρεύμα σήραγγας της τάξεως των 10-9  Α(nΑ).Εάν η ακίδα κινείται παράλληλα στην επιφάνεια του δείγματος, το ρεύμα μεγαλώνει ή μικραίνει ανάλογα με το αν το δείγμα παρουσιάζει «λόφους» και «κοιλάδες» στην επιφάνειά του.Για να διατηρηθεί το ρεύμα σταθερό πρέπει η απόσταση ακίδας-δείγματος να διατηρείται σταθερή.Πρέπει δηλαδή η ακίδα να κινείται συνεχώς πλησιάζοντας ή απομακρυνόμενη από το δείγμα.Παρακολουθώντας την κίνηση της ακίδας έχουμε μια εικόνα των ανωμαλιών που παρουσιάζει η επιφάνεια του δείγματος σε κάθε θέση. 
 Με πολλαπλές σαρώσεις της επιφάνειας του δείγματος και με εξομοιώσεις που πετυχαίνουμε με τη βοήθεια ηλεκτρονικών υπολογιστών καταλήγουμε σε απεικονίσεις αγώγιμων επιφανειών σε ατομική κλίμακα.
Εικόνα 1.Προσμίξεις ατόμων χρυσού σε επιφάνεια γραφίτη.
Εικόνα 2.Άτομα άνθρακα στην επιφάνεια γραφίτη
 Γεννιέται το ερώτημα πώς είναι δυνατόν η ακίδα να κινείται μπρος-πίσω με την απαιτούμενη ακρίβεια κατά τη σάρωση της επιφάνειας;Σίγουρα αυτό δεν θα μπορούσε να γίνει με μηχανικό τρόπο,με βίδες και γρανάζια.Οι Binnig και Rohrer χρησιμοποίησαν πιεζοηλεκτρικούς κρυστάλλους για να στερεώσουν την ακίδα τους και να ελέγξουν την κίνηση της στο επίπεδο xy (σάρωση) και στον άξονα z (πλησίασμα-απομάκρυνση).
 Οι πιεζοηλεκτρικοί κρύσταλλοι αναπτύσσουν στα άκρα τους μια διαφορά δυναμικού όταν συμπιέζονται και,αντίστροφα,συμπιέζονται ή εκτείνονται όταν μια διαφορά δυναμικού εφαρμόζεται σ' αυτούς.
 Εάν εφαρμοστεί η κατάλληλη διαφορά δυναμικού στους x και y κρυστάλλους μπορούμε να εξασφαλίσουμε την κίνηση σάρωσης της ακίδας με ταχύτητες της τάξης των 10 nm/s.
Εάν εφαρμοστεί η κατάλληλη διαφορά δυναμικού στους x και y κρυστάλλους μπορούμε να εξασφαλίσουμε την κίνηση σάρωσης της ακίδας με ταχύτητες της τάξης των 10 nm/s
 Καθώς η σάρωση προχωράει,ένα κύκλωμα «νιώθει» κάθε αλλαγή στο ρεύμα σήραγγας και παράγει την κατάλληλη τάση,που εφαρμόζεται στον κρύσταλλο z μετακινώντας την ακίδα μέχρι να αποκατασταθεί η σταθερότητα του ρεύματος σήραγγας.
 Από την αρχή λειτουργίας του το STM,δε μπορεί να απεικονίσει επιφάνειες μη αγώγιμων υλικών.Για τέτοιου είδους απεικονίσεις χρησιμοποιείται το SFM (Scanning Force Microscope),το οποίο στηρίζεται στην ανίχνευση των απωστικών δυνάμεων που αναπτύσσονται ανάμεσα στα άτομα όταν αυτά πλησιάσουν πολύ μεταξύ τους.




Παρακαλώ αναρτήστε:

author

ΣΥΓΓΡΑΦΕΑΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ τμήμα ΦΥΣΙΚΗΣ μέλοs τηs ΕΝΩΣΗΣ ΕΛΛΗΝΩΝ ΦΥΣΙΚΩΝ

Αποκτήστε δωρεάν ενημερώσεις!!!

ΠΑΡΑΔΙΔΟΝΤΑΙ ΙΔΙΑΙΤΕΡΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ,ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΧΗΜΕΙΑΣ ΓΙΑ ΟΛΕΣ ΤΙΣ ΤΑΞΕΙΣ ΓΥΜΝΑΣΙΟΥ ΚΑΙ ΛΥΚΕΙΟΥ------------ ΠΡΟΕΤΟΙΜΑΣΙΑ ΦΟΙΤΗΤΩΝ ΚΑΙ ΣΠΟΥΔΑΣΤΩΝ ΓΙΑ ΤΙΣ ΕΞΕΤΑΣΕΙΣ Α.Ε.Ι , Τ.Ε.Ι. ΚΑΙ Ε.Μ.Π.------------ΕΠΙΚΟΙΝΩΝΙΑ------------ Τηλέφωνο κινητό : 6974662001 ------------ ------------ Email : sterpellis@gmail.com DONATE Εθνική Τράπεζα της Ελλάδος: Αριθμός λογαριασμού IBAN GR7701101570000015765040868

ΠΑΡΑΔΙΔΟΝΤΑΙ ΙΔΙΑΙΤΕΡΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ,ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΧΗΜΕΙΑΣ ΓΙΑ ΟΛΕΣ ΤΙΣ ΤΑΞΕΙΣ ΓΥΜΝΑΣΙΟΥ ΚΑΙ ΛΥΚΕΙΟΥ ΠΡΟΕΤΟΙΜΑΣΙΑ ΦΟΙΤΗΤΩΝ ΚΑΙ ΣΠΟΥΔΑΣΤΩΝ ΓΙΑ ΤΙΣ ΕΞΕΤΑΣΕΙΣ Α.Ε.Ι , Τ.Ε.Ι. ΚΑΙ Ε.Μ.Π. ------------------------------------ΕΠΙΚΟΙΝΩΝΙΑ Τηλέφωνο κινητό : 6974662001 Email : sterpellis@gmail.com DONATE Εθνική Τράπεζα της Ελλάδος: Αριθμός λογαριασμού IBAN GR7701101570000015765040868