ΣΤΕΡΓΙΟΣ ΠΕΛΛΗΣ | 8:01 μ.μ. | | | | | Best Blogger Tips

ΜΕΓΕΘΗ ΠΟΥ ΧΑΡΑΚΤΗΡΙΖΟΥΝ ΜΙΑ ΤΑΛΑΝΤΩΣΗ

|
ΜΕΓΕΘΗ ΠΟΥ ΧΑΡΑΚΤΗΡΙΖΟΥΝ ΜΙΑ ΤΑΛΑΝΤΩΣΗ
ΜΕΓΕΘΗ ΠΟΥ ΧΑΡΑΚΤΗΡΙΖΟΥΝ ΜΙΑ ΤΑΛΑΝΤΩΣΗ

ΕΙΣΑΓΩΓΗ

 Για να περιγράψουμε μια ταλάντωση χρησιμοποιούμε μερικά φυσικά μεγέθη όπως:
α) η συχνότητα f της ταλάντωσης.
β) η περίοδος Τ  της ταλάντωσης.
γ) τη γωνιακή συχνότητα ω της ταλάντωσης.
δ) το πλάτος A της ταλάντωσης.
 Γι' αυτό και με  τη βοήθεια  του αριθμού των επαναλήψεων  του φαινομένου και του χρόνου μέσα στον οποίο πραγματοποιήθηκαν, ορίσαμε  τη συχνότητα,ένα φυσικό μέγεθος που δείχνει πόσες  φορές  επαναλαμβάνεται  ένα περιοδικό φαινόμενο στη μονάδα  του χρόνου. 
Mε  τη βοήθεια  του αριθμού των επαναλήψεων  του φαινομένου και  του χρόνου μέσα στον οποίο πραγματοποιήθηκαν,ορίσαμε  τη συχνότητα, ένα φυσικό μέγεθος που δείχνει πόσες  φορές  επαναλαμβάνεται  ένα περιοδικό φαινόμενο στη μονάδα  του χρόνου
 Η συχνότητα αποτελεί επίσης ένα από  τα βασικά χαρακτηριστικά του περιοδικού φαινομένου. 
 Το αντίστροφο της περιόδου είναι η συχνότητα της κίνησης.

ΟΡΙΣΜΟΣ ΣΥΧΝΟΤΗΤΑΣ

 Συχνότητα (f) ενός περιοδικού φαινομένου  λέγεται το φυσικό  μέγεθος που εκφράζεται με το πηλίκο του αριθμού Ν των επαναλήψεων του φαινομένου  προς τον  χρόνο t μέσα στον οποίο πραγματοποιήθηκαν.
Συχνότητα περιοδικού φαινομένου ονομάζεται ο αριθμός των επαναλήψεων που κάνει το σώμα στη μονάδα του χρόνου
 Η τιμή της συχνότητας του περιοδικού φαινομένου είναι το αντίστροφο πηλίκο  του αριθμού  των  επαναλήψεων  του  φαινομένου προς τον αντίστοιχο  χρόνο.
  
                                                                       f=N/t

όπου:
f η συχνότητα περιοδικού φαινομένου.
Ν ο αριθμός των επαναλήψεων που κάνει το σώμα.
t ο χρόνος του φαινομένου του σώματος.
 Η συχνότητα (f) περιοδικού φαινομένου είναι μονόμετρο μέγεθος.


ΜΟΝΑΔΑ ΜΕΤΡΗΣΗΣ ΣΥΧΝΟΤΗΤΑΣ

 Μονάδα μέτρησης της συχνότητας είναι το 1 Ηz.
 Το Ηz ισούται με 1 s-1 ή με 1 κύκλο/s.

ΠΑΡΑΔΕΙΓΜΑΤΑ ΤΙΜΩΝ ΣΥΧΝΟΤΗΤΩΝ

ΠαράδειγμαΣυχνότητα (Hz)
Συχνότητα περιστροφής CD σε συσκευή CD Player8,33
Συχνότητα εναλλασσόμενου ρεύματος (Ευρωπαϊκά ηλεκτρικά δίκτυα)50
Συχνότητα νότας Λα (4η οκτάβα)440 
Περιοχή συχνοτήτων ακουστικών σημάτων20 - 20.000
Περιοχή συχνοτήτων ορατού φωτός4.3×1014 − 7.5×1014
ΣΧΕΣΗ ΠΕΡΙΟΔΟΥ ΚΑΙ ΣΥΧΝΟΤΗΤΑΣ 

 Όπως αναφέραμε η περίοδος και η συχνότητα είναι αντίστροφα μεγέθη. Επειδή σε χρόνο t=Τ το σώμα κάνει μία επανάληψη,έχουμε Ν=1.Από την σχέση f=N/t όπου t=Τ και Ν=1 προκύπτει:          

f=N/t                       ή                                              


                                                           f=1/Τ

ΓΩΝΙΑΚΗ ΣΥΧΝΟΤΗΤΑ ΠΕΡΙΟΔΙΚΟΥ ΦΑΙΝΟΜΕΝΟΥ


 Στην κυκλική κίνηση ορίζεται το  διανυσματικό μέγεθος γωνιακή  ταχύτητα με μέτρο ω=dφ/dt.Ένα άλλο μέγεθος των περιοδικών φαινομένων είναι η γωνιακή συχνότητα ω.

ΟΡΙΣΜΟΣ ΓΩΝΙΑΚΗΣ ΣΥΧΝΟΤΗΤΑΣ


 Γωνιακή συχνότητα (ω) περιοδικού φαινομένου ονομάζεται το μέγεθος που αναφέρεται σε όλα τα περιοδικά φαινόμενα και εκφράζει τον αριθμό των επαναλήψεων ενός φαινομένου σε χρόνο 2π sec.

Γωνιακή συχνότητα (ω) περιοδικού φαινομένου ονομάζεται το μέγεθος που αναφέρεται σε όλα τα περιοδικά φαινόμενα και εκφράζει τον αριθμό των επαναλήψεων ενός φαινομένου σε χρόνο 2π sec
 Το μέτρο  της γωνιακή συχνότητας είναι:

                                                                          ω=2·π/Τ=2·π·f

όπου:
ω η γωνιακή συχνότητα του περιοδικού φαινομένου
Τ η περίοδος περιοδικού φαινομένου.
f η συχνότητα περιοδικού φαινομένου.
 Η γωνιακή συχνότητα (ω) περιοδικού φαινομένου είναι μονόμετρο μέγεθος.
Το διάνυσμα της γωνιακής  ταχύτητας στην κυκλική κίνηση
 Η γωνιακή συχνότητα δεν έχει άμεση φυσική σημασία.Στην ομαλή κυκλική κίνηση  το μέτρο της  γωνιακής  ταχύτητας που έχει ως  κυκλική κίνηση είναι ίσο με τη γωνιακή συχνότητα που έχει ως περιοδική κίνηση.

ΜΟΝΑΔΑ ΜΕΤΡΗΣΗΣ ΤΗΣ ΓΩΝΙΑΚΗΣ ΣΥΧΝΟΤΗΤΑΣ


 Μονάδα μέτρησης της  γωνιακής συχνότητας είναι  το 1 rad/s

AΠΛΟ ΕΚΚΡΕΜΕΣ

 Το απλό εκκρεμές αποτελείται από ένα σώμα κρεμασμένο από  αβαρές νήμα που το άλλο άλλο άκρο του είναι στερεωμένο σ' ένα σταθερό σημείο.Αν το σώμα απομακρυνθεί από τη θέση ισορροπίας,εκτελεί ταλάντωση ανάμεσα στις δύο ακραίες θέσεις.Αν απομακρύνουμε το σώμα λίγο από τη θέση ισορροπίας του τότε εξαιτίας της μιας συνιστώσας του βάρους αυτό θέλει να επιστρέψει στην αρχική του θέση.Φτάνοντας στην κατακόρυφη θέση έχει ήδη ταχύτητα και έτσι,αντί να σταματήσει,συνεχίζει περνώντας στην άλλη πλευρά.
Το απλό εκκρεμές αποτελείται από ένα σώμα κρεμασμένο από  αβαρές νήμα που το άλλο άλλο άκρο του είναι στερεωμένο σ' ένα σταθερό σημείο
 Η κίνηση,αν δεν υπάρχουν τριβές, επαναλαμβάνεται συνεχώς.Αυτή η κίνηση είναι η ταλάντωση του εκκρεμούς και μοιάζει πολύ με την κίνηση μιας παιδικής κούνιας (με κάποιες διαφοροποιήσεις).Εξαιτίας της x-συνιστώσας του βάρους,το σώμα εκτελεί ταλάντωση.Η δύναμη επαναφοράς είναι το βάρος του σώματος.Εφόσον το εκκρεμές εκτελεί ταλάντωση,η κίνησή του περιγράφεται από την περίοδο,τη συχνότητα και το πλάτος.Πειραματικά προκύπτει ότι η περίοδος του εκκρεμούς είναι ανεξάρτητη της μάζας του.
Σε κάθε θέση η x-συνιστώσα του βάρους τράβα το σώμα προς τη θέση ισορροπίας με αποτέλεσμα το σώμα εκτελεί ταλάντωση
 Επίσης πειραματικά προκύπτει ότι η περίοδος της ταλάντωσης ενός απλού εκκρεμούς έχει τα παρακάτω χαρακτηριστικά:
α) Η περίοδος του εκκρεμούς δεν εξαρτάται από την μάζα του
β) Η περίοδος του εκκρεμούς δεν εξαρτάται από το πλάτος,όταν εκτρέπεται κατά μικρή γωνία(μικρότερη από 10 μοίρες)
γ) Αυξάνεται όταν μεγαλώσουμε το μήκος του νήματος.Όταν ένα εκκρεμές έχει μεγάλο μήκος έχει μεγαλύτερη περίοδο από άλλο εκκρεμές με μικρότερο μήκος.Τα εκκρεμή που έχουν ίδιο μήκος έχουν την ίδια περίοδο ταλάντωσης.Αυτήν την ιδιότητα του εκκρεμούς οι μηχανικοί την χρησιμοποιούν για να κατασκευάσουν χρονόμετρα.
δ) Εξαρτάται από τον τόπο στον οποίο βρίσκεται,δηλαδή εξαρτάται από την επιτάχυνση της βαρύτητας g.Το ίδιο εκκρεμές εκτελεί μια πλήρη ταλάντωση σε μικρότερο χρόνο,όταν είναι στους πόλους απ' ότι όταν βρίσκεται στον ισημερινό.




Παρακαλώ αναρτήστε:

author

ΣΥΓΓΡΑΦΕΑΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ τμήμα ΦΥΣΙΚΗΣ τομέαs ΑΣΤΡΟΓΕΩΦΥΣΙΚΗΣ μέλοs τηs ΕΝΩΣΗΣ ΕΛΛΗΝΩΝ ΦΥΣΙΚΩΝ

Αποκτήστε δωρεάν ενημερώσεις!!!

ΠΑΡΑΔΙΔΟΝΤΑΙ ΙΔΙΑΙΤΕΡΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ,ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΧΗΜΕΙΑΣ ΓΙΑ ΟΛΕΣ ΤΙΣ ΤΑΞΕΙΣ ΓΥΜΝΑΣΙΟΥ ΚΑΙ ΛΥΚΕΙΟΥ------------ ΠΡΟΕΤΟΙΜΑΣΙΑ ΦΟΙΤΗΤΩΝ ΚΑΙ ΣΠΟΥΔΑΣΤΩΝ ΓΙΑ ΤΙΣ ΕΞΕΤΑΣΕΙΣ Α.Ε.Ι , Τ.Ε.Ι. ΚΑΙ Ε.Μ.Π.------------ΕΠΙΚΟΙΝΩΝΙΑ------------ Τηλέφωνο κινητό : 6974662001 ------------ ------------ Email : sterpellis@gmail.com Εθνική Τράπεζα της Ελλάδος: Αριθμός λογαριασμού IBAN GR7701101570000015765040868

ΠΑΡΑΔΙΔΟΝΤΑΙ ΙΔΙΑΙΤΕΡΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ,ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΧΗΜΕΙΑΣ ΓΙΑ ΟΛΕΣ ΤΙΣ ΤΑΞΕΙΣ ΓΥΜΝΑΣΙΟΥ ΚΑΙ ΛΥΚΕΙΟΥ ΠΡΟΕΤΟΙΜΑΣΙΑ ΦΟΙΤΗΤΩΝ ΚΑΙ ΣΠΟΥΔΑΣΤΩΝ ΓΙΑ ΤΙΣ ΕΞΕΤΑΣΕΙΣ Α.Ε.Ι , Τ.Ε.Ι. ΚΑΙ Ε.Μ.Π. ------------------------------------ΕΠΙΚΟΙΝΩΝΙΑ Τηλέφωνο κινητό : 6974662001 Email : sterpellis@gmail.com Εθνική Τράπεζα της Ελλάδος: Αριθμός λογαριασμού IBAN GR7701101570000015765040868