ΓΡΑΜΜΙΚΗ ΤΑΧΥΤΗΤΑ
υ=S/t
(ορισμός γραμμικής ταχύτητας)
Άρα η γραμμική ταχύτητα έχει:
μέτρο: υ =S/t
διεύθυνση: Τη διεύθυνση της εφαπτομένης του κύκλου στο σημείο που βρίσκεται κάθε στιγμή το κινητό.
φορά: Τη φορά της κίνησης.
Μονάδα μέτρησης της γραμμικής ταχύτητας στο S.I. είναι το:
1 m/s
Η κατεύθυνση της γραμμικής ταχύτητας του κινητού μεταβάλλεται συνεχώς,ενώ το μέτρο της (υ=S/t) παραμένει σταθερό,γιατί το κινητό σε ίσους χρόνους διανύει ίσα διαστήματα.
ΜΕΛΕΤΗ ΓΡΑΜΜΙΚΗΣ ΤΑΧΥΤΗΤΑΣ
Στο τελευταίο τύπο υ=S/t θέτουμε t=Τ.Τότε το τόξο που θα διανύσει το κινητό θα έχει μήκος S=2·π·R,που είναι το μήκος της περιφέρειας της κυκλικής τροχιάς.
Άρα έχουμε:
ΓΡΑΜΜΙΚΗ ΤΑΧΥΤΗΤΑ |
ΕΙΣΑΓΩΓΗ
Ας πάρουμε ένα κινητό που εκτελεί ομαλή κυκλική κίνηση.Στον πολύ μικρό χρόνο διανύει το τόξο ΔS.
Το μέτρο της ταχύτητας που ονομάζεται γραμμική ταχύτητα θα είναι:
υ=ΔS/Δt
Σύμφωνα με τον ορισμό της ομαλής κυκλικής κίνησης το μέτρο της γραμμικής ταχύτητας του κινητού παραμένει σταθερό,ενώ η κατεύθυνση της μεταβάλλεται συνεχώς,επειδή κάθε στιγμή είναι εφαπτόμενη στην τροχιά.
Άρα τα διανυόμενα τόξα είναι ανάλογα των χρόνων στους οποίους διανύονται.Συνεπώς μπορούμε να γράψουμε:
Ας πάρουμε ένα κινητό που εκτελεί ομαλή κυκλική κίνηση.Στον πολύ μικρό χρόνο διανύει το τόξο ΔS.
Το μέτρο της ταχύτητας που ονομάζεται γραμμική ταχύτητα θα είναι:
υ=ΔS/Δt
Σύμφωνα με τον ορισμό της ομαλής κυκλικής κίνησης το μέτρο της γραμμικής ταχύτητας του κινητού παραμένει σταθερό,ενώ η κατεύθυνση της μεταβάλλεται συνεχώς,επειδή κάθε στιγμή είναι εφαπτόμενη στην τροχιά.
Ένα κινητό εκτελεί ομαλή κυκλική κίνηση |
ΔS=υ·Δt ή
S=υ·t
S=υ·t
Επομένως το μέτρο της ταχύτητάς του,που είναι η γραμμική ταχύτητα θα είναι:
υ=S/t
ΟΡΙΣΜΟΣ ΓΡΑΜΜΙΚΗΣ ΤΑΧΥΤΗΤΑΣ
Γραμμική ταχύτητα υ ονομάζεται το διανυσματικό μέγεθος που το μέτρο της ισούται με το πηλίκο του μήκους του τόξου S που διάνυσε το κινητό σε χρόνο t,προς τον αντίστοιχο χρόνο t.ΟΡΙΣΜΟΣ ΓΡΑΜΜΙΚΗΣ ΤΑΧΥΤΗΤΑΣ
υ=S/t
(ορισμός γραμμικής ταχύτητας)
Άρα η γραμμική ταχύτητα έχει:
Γραμμική ταχύτητα ονομάζεται το διανυσματικό μέγεθος που το μέτρο της ισούται με το πηλίκο του μήκους του τόξου S που διάνυσε το κινητό σε χρόνο t,προς τον αντίστοιχο χρόνο t |
διεύθυνση: Τη διεύθυνση της εφαπτομένης του κύκλου στο σημείο που βρίσκεται κάθε στιγμή το κινητό.
φορά: Τη φορά της κίνησης.
Η κατεύθυνση της γραμμικής ταχύτητας του κινητού μεταβάλλεται συνεχώς |
1 m/s
Η κατεύθυνση της γραμμικής ταχύτητας του κινητού μεταβάλλεται συνεχώς,ενώ το μέτρο της (υ=S/t) παραμένει σταθερό,γιατί το κινητό σε ίσους χρόνους διανύει ίσα διαστήματα.
ΜΕΛΕΤΗ ΓΡΑΜΜΙΚΗΣ ΤΑΧΥΤΗΤΑΣ
Στο τελευταίο τύπο υ=S/t θέτουμε t=Τ.Τότε το τόξο που θα διανύσει το κινητό θα έχει μήκος S=2·π·R,που είναι το μήκος της περιφέρειας της κυκλικής τροχιάς.
Η γραμμική ταχύτητα έχει τη διεύθυνση της εφαπτομένης του κύκλου στο σημείο που βρίσκεται κάθε στιγμή το κινητό |
2·π·R=υ·Τ ή
υ=2·π·R/Τ
(τύπος γραμμικής ταχύτητας)
υ=2·π·R/Τ
(τύπος γραμμικής ταχύτητας)
Ας υποθέσουμε ότι τη χρονική στιγμή t=0 το κινητό βρίσκεται στη θέση Α και μετά από χρόνο t,κινούμενο κατά τη θετική φορά που φαίνεται στο παρακάτω σχήμα,με γραμμική ταχύτητα μέτρου υ βρίσκεται στη θέση Β,έχοντας διανύσει το τόξο Δs.
Η θέση του κινητού πάνω στην τροχιά του μπορεί να προσδιορισθεί,κάθε στιγμή,με δύο τρόπους:
Το μέτρο της γραμμικής ταχύτητας παραμένει σταθερό,γιατί το κινητό σε ίσους χρόνους διανύει ίσα διαστήματα |
α) Με τη μέτρηση του μήκους του τόξου ΑΒ (ΔS=υ·Δt).
β) Με τη μέτρηση της γωνίας ΑΟΒ (ΑΟΒ=Δθ) την οποία διαγράφει μια ακτίνα, που θεωρούμε ότι συνδέει κάθε στιγμή το κινητό με το κέντρο της τροχιάς του (επιβατική ακτίνα).
Έτσι όταν το κινητό θα έχει "διανύσει" τόξο μήκους Δs η επιβατική ακτίνα θα έχει "διαγράψει" επίκεντρη γωνία Δθ.
Τη χρονική στιγμή t=0 το κινητό βρίσκεται στη θέση Α και μετά από χρόνο t,κινούμενο κατά τη θετική φορά |