|
ΣΤΕΡΓΙΟΣ ΠΕΛΛΗΣ | 6:10 μ.μ. | | | | Best Blogger Tips

Η ΔΙΑΤΗΡΗΣΗ ΤΗΣ ΜΗΧΑΝΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΣΤΗΝ ΟΡΙΖΟΝΤΙΑ ΒΟΛΗ

Η ΔΙΑΤΗΡΗΣΗ ΤΗΣ ΜΗΧΑΝΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΣΤΗΝ ΟΡΙΖΟΝΤΙΑ ΒΟΛΗ

  Από ένα σημείο Ο, που βρίσκεται σε ύψος Η από το δάπεδο, εκτοξεύεται ένα βλήμα μάζας m με οριζόντια ταχύτητα υ0. Δεχόμαστε πως η μοναδική δύναμη που του ασκείται είναι το βάρος του Β. Όπως είναι γνωστό , το σώμα θα διαγράψει μια παραβολική τροχιά.
Από ένα σημείο Ο, που βρίσκεται σε ύψος Η από το δάπεδο, εκτοξεύεται ένα βλήμα μάζας m με οριζόντια ταχύτητα υ0. Δεχόμαστε πως η μοναδική δύναμη που του ασκείται είναι το βάρος του Β
  Ζητούμε την τιμή της ταχύτητας υΑ με την οποία το σώμα φτάνει στο δάπεδο. Γνωρίζουμε πως σε κάθε σημείο της τροχιάς και κατά συνέπεια και στο (Α) η ταχύτητα του σώματος αναλύεται σε συνιστώσες υx και υy. Επειδή οι συνιστώσες αυτές είναι κάθετες μεταξύ τους θα ισχύει:


υA = υx(A)2 + υy(A)2  

  Η κίνηση στον άξονα x είναι ομαλή και στον άξονα y ομαλά επιταχυνόμενη. Άρα για τις ταχύτητες υx και υy, ισχύουν οι σχέσεις:

υx(A) = υ0     και     

υy(A) = gtA

  Αντικαθιστώντας τις τιμές των υx, υy στην σχέση παίρνουμε για την ταχύτητα υΑ:


υA = υ02 + g2tA2

  Για την κίνηση στον άξονα (y) ισχύει η σχέση:


H = 12gt2A      ή

tA = 2Hg



   Έτσι από τις σχέσεις βρίσκουμε για τη ζητούμενη ταχύτητα:



υA = υ02 + 2gH



 Ένας άλλος τρόπος για να υπολογίσουμε την ταχύτητα του σώματος στο σημείο Α είναι ο εξής:
  Επειδή η κίνηση του σώματος γίνεται μόνο με την επίδραση του βάρους του, το οποίο είναι δύναμη συντηρητική, θα πρέπει η μηχανική του ενέργεια να διατηρείται.
  Συνεπώς για τη μηχανική ενέργεια του σώματος στις θέσεις Ο και Α μπορούμε να γράψουμε:


Ε(Ο) = Ε(Α)     ή    

1202  + mgH = 12A2


  Από τη σχέση  επιλύοντας ως προς την ταχύτητα υΑ βρίσκουμε τελικά:



υA = υ02 + 2gH    

Πρέπει να επισημάνουμε, πως η διατήρηση της μηχανικής ενέργειας στην οριζόντια βολή, είναι μια πολύ χρήσιμη πρόταση. Με τη βοήθεια της μπορούμε ευκολότερα απ' ότι με τις εξισώσεις κίνησης, να αντιμετωπίζουμε προβλήματα μηχανικής, αρκεί να μην ζητείται ο χρόνος κίνησης.




Παρακαλώ αναρτήστε:

author

ΣΥΓΓΡΑΦΕΑΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ τμήμα ΦΥΣΙΚΗΣ τομέαs ΑΣΤΡΟΓΕΩΦΥΣΙΚΗΣ μέλοs τηs ΕΝΩΣΗΣ ΕΛΛΗΝΩΝ ΦΥΣΙΚΩΝ

Αποκτήστε δωρεάν ενημερώσεις!!!

ΠΑΡΑΔΙΔΟΝΤΑΙ ΙΔΙΑΙΤΕΡΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ,ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΧΗΜΕΙΑΣ ΓΙΑ ΟΛΕΣ ΤΙΣ ΤΑΞΕΙΣ ΓΥΜΝΑΣΙΟΥ ΚΑΙ ΛΥΚΕΙΟΥ------------ ΠΡΟΕΤΟΙΜΑΣΙΑ ΦΟΙΤΗΤΩΝ ΚΑΙ ΣΠΟΥΔΑΣΤΩΝ ΓΙΑ ΤΙΣ ΕΞΕΤΑΣΕΙΣ Α.Ε.Ι , Τ.Ε.Ι. ΚΑΙ Ε.Μ.Π.------------ΕΠΙΚΟΙΝΩΝΙΑ------------ Τηλέφωνο κινητό : 6974662001 ------------ Τηλέφωνο οικίας :210 7560725 ------------ Email : sterpellis@gmail.com

ΠΑΡΑΔΙΔΟΝΤΑΙ ΙΔΙΑΙΤΕΡΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ,ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΧΗΜΕΙΑΣ ΓΙΑ ΟΛΕΣ ΤΙΣ ΤΑΞΕΙΣ ΓΥΜΝΑΣΙΟΥ ΚΑΙ ΛΥΚΕΙΟΥ ΠΡΟΕΤΟΙΜΑΣΙΑ ΦΟΙΤΗΤΩΝ ΚΑΙ ΣΠΟΥΔΑΣΤΩΝ ΓΙΑ ΤΙΣ ΕΞΕΤΑΣΕΙΣ Α.Ε.Ι , Τ.Ε.Ι. ΚΑΙ Ε.Μ.Π. ------------------------------------ΕΠΙΚΟΙΝΩΝΙΑ Τηλέφωνο κινητό : 6974662001 Τηλέφωνο οικίας :210 7560725 Email : sterpellis@gmail.com